1632 Inorganic Chemistry, Vol. 9, No. 7, 1970

- g.8ina

Ri1cHARDSON, CORFIELD, SANDS, AND SIEVERS

Figure 8.—Projection of the structure of copper(I11) formate monourea onto a plane perpendicular to the [010] direction.

tabulated in Table V and the more plausible hydrogen-
bonding interactions are illustrated in Figures 2 and 3.
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The crystal structure of tris(acetylacetonato)(4-amino-3-penten-2-one)ytterbium, Yb{CsH70,):(CH;COCH=C(NH,)CH,),
has been determined from three-dimensional X-ray diffraction data. A total of 1301 independent nonzero reflections were
collected by counter methods, Four formula units crystallize in a monoclinic unit cell with dimensions ¢ = 18.070 (7),
b = 8.538 (10), ¢ = 15.938 (8) A; 8 = 00.13 (10)°. The observed and calculated densities are both 1.56 g/cm?; the space
group is P2;/c. The structtire was refined by full-matrix least-squares methods to a conventional R factor of 0.073. The
ytterbium atom is seven-coordinate, being bonded to six acetylacetonate oxygen atoms and the oxygen atom from the acetyl-
acetonimine molecule. The coordination polyhedron is a capped trigonal prism, with an acetylacetonate oxygen as the
capping atom, The NH; group in acetylacetonimine is hydrogen bonded to the acetylacetonate oxygen atoms in a glide-
related molecule, thus linking the molecules in chains parallel to (100). The metal-acetylacetonate rings are folded about
the O-O lines, at angles ranging from 10.1 to 19.6°. The Yb-O(acetylacetonimine) distance of 2.24 (2) Ais practically the

same as the average of the six Ybh~O(acetylacetonate) distances, 2.23 (2) A.

In recent studies of rare earth acetylacetonates (Ln-
(acac)s),? it was found that an acetylacetonimine
(Hacim) solvate, with the formula Ln(acac);- Hacim, is
fairly easily obtained for ¥Yb and Lu by the ordinary
Stites, McCarty, and Quill preparation method.? Both
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the Yb and Lu compounds can be recrystallized un-
changed from acetylacetone and a variety of other sol-
vents.? Infrared spectra? suggest that the Hacim
exists in the amine tautomeric form, 4-amino-3-penten-
2-one (1), The crystal structure of the Yb compound
has been determined in order to discover what structure

CHaﬁCH:CCHa
0 NH,
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features give the adduct such great stability. Amnother
group of workers? has also examined the structure of
Yb(acac)s- Hacim. However, the solution and refine-
ment of the structure were hindered because the com-
pound was initially incorrectly formulated as hydrated
ytterbium acetylacetonate.®

Experimental Section

Yhb(acac);- Hacim was prepared as described previously? and
recrystallized from benzene. The crystals were examined under
a polarizing microscope and a rectangular prism 0.05 X 0.10 X
0.17 mm, parallel to a, b, and ¢, respectively, was chosen for the
single-crystal study. The crystal was sealed in a thin-walled
glass capillary with the 0.17-mm dimension parallel to the capil-
lary. Preliminary oscillation and Weissenberg photographs
(hk0-hE3) indicated the monoclinic space group P2;/c (00
absent for k2 odd, k0! absent for [ odd). The crystal was trans-
ferred to a General Electric X-ray spectrometer equipped with a
single-crystal orienter and scintillation counter with pulse height
analyzer. The crystal was oriented about the [102] axis. The
unit cell dimensions were determined accurately from slow
6-26 scans of the %,0,2%, 00, and 00! reflections: a = 18.070 £
0.007, b = 8.538 =+ 0.010, ¢ = 18.938 = 0.006 A. Thestandard
deviations given were derived from the variance of the measure-
ments made of each parameter. The monoclinic angle was
measured directly from the observed angle between the A00 and
00! rows: B = 99.13 =+ 0.10°. The measured density (by
flotation in CHCls-hexane) is 1.56 g/cm?®; the density calculated
for four molecules in the cell is 1.56 g/cm3.

Goniostat settings® were calculated for the Mo Koy line (A
0.70930 A). The intensities of all independent reflections for
which 26 £ 40° were measured manually using a 40-sec counting
period and Zr-filtered Mo Ko radiation at a takeoff angle of 4°.
The counter aperture was 3°. Since ¢ is the most critical angle
setting for measuring the data manually, the reflections were
sorted according to the value of ¢ and all reflections with a given
¢ were measured consecutively., Where possible, a strong re-
flection in each group was used to obtain the optimum ¢. This
procedure minimizes errors due to small missettings of the ¢
wheel. Conversion factors for obtaining integrated intensities
were based on 12 intensities measured by a manual w scan. These
reflections covered the 26 range 4-34°. Background correc-
tions were made by interpolation of a plot of background vs. 26
which was based on measurements made with the crystal out of
reflecting position. A standard reflection (200) was measured
after every ~50 reflections. A factor of 4o/4 was applied to
correct for decomposition (which was ~10%,) and instrumental
fluctuations, where A4, is the first value of the standard reflection
and A is the value obtained by linear interpolation between the
two standard reflections which bracket the intensity being mea-
sured.

The intensities were converted to structure factors by means of
the equation

Fo? = [(Iraw -~ B)S}P

where Iraw is the raw counts, B is the background, S = 4 /40, 7
is the ratio for converting peak heights to integrated intensities,
and P is the Lorentz-polarization correction. An absorption
correction (u = 40.9 cm~1) was then applied to the data. The
transmission factors ranged from 0.664 to 0.815. Standard

(4) (a) E. F. Korytnyi, L. A. Aslanov, M. A. Porai-Koshits, and 0. M.
Petrukhin, Zh. Strukt. Khim., 9, 540 (1968); (b) M. A. Porai-Koshits, 8th
International Congress of Crystallography, Stony Brook, N. Y., Aug 15,
1969,

(5) Computations were carried out primarily on the IBM 7004 computers
at Wright-Patterson Air Force Base. Programs used included Sands’ INCOR
for converting intensities to structure factors; Busing, Martin, and Levy's
orrrE for function and error analysis; Johnson’s ORTEP thermal ellipsoid
plotting program; and local versions of Hamilton’s GoNo9 for the absorp-
tion correction, Zalkin’s FORDAP for the Fourier syntheses, and Busing and
Levy’s orRFLS for the full-matrix least-squares refinement,
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deviations on F, were calculated by means of eq 1, which is a
variation of the method of Smith and Alexander.f In this
equation, C = (liaw — B)and s is the estimated variance in the

o(Fo) =

Siaw + Law®SU+ S)/A + B s
0.5F, 2 + —r—z (1)
measurement of 7. A total of 2479 intensities, of which 1301
were at least twice the standard deviation and are therefore
classified as observed, were obtained. Only the observed reflec-
tions were used in the final stages of the structure determination
and refinement.

Structure Determination and Refinement

The atomic form factors for Yb®+ were taken from
Cromer, Larson, and Waber those for C, N, and O
were from the compilation of Ibers.® The values for
the six oxygen atoms in the three acetylacetonate rings
were the average of values for the neutral atom and O—.
The real and imaginary components of the anomalous
scattering of the Yb were taken from the compilation of
Templeton.$:10

Trial ytterbium positions were deduced from the
three-dimensional unsharpened Patterson function.
Further interpretation of the Patterson function was
not attempted due to extensive crowding and over-
lapping of peaks. The ytterbium atoms occupy the
P2;/c general positions 4(e): =(x, v, z; x, V2 — %,
/s 4+ 2) withx = 026,y = 0.12, z = 0.13. The ytter-
bium positional parameters, one scale factor, and the
overall temperature factor were refined by the method
of least squares. The function minimized was Zw-
(|F0[ — |Fc|)2, where w = 1/02(F,) and F, and F, are
the observed and calculated structure factors, respec-
tively. The conventional R factor, R = Z(|F.| —
]FJ)/E]F,,I, was 0.47; the weighted R factor, R; =
[Zw(|F,] — |E|)*/Zw(|F.])?]"", was 0.59 (including
unobserved reflections).

A difference Fourier map based on F, — F, was cal-
culated with all of the data. This map had seven peaks
at approximately the distance from the ytterbium atom
expected for the oxygen atoms. In addition, all of the
atoms in the acetylacetonimine group and three carbon
atoms of an acetylacetonate ring were found. An ad-
ditional difference Fourier synthesis yielded the re-
maining 12 carbon atoms. Two cycles of full-matrix
least-squares refinement (scale factor, positional param-
eters, individual isotropic temperature factors) with all
of the data, including unobserved reflections, gave Ry =
0.21, Ry = 0.14.

The unobserved data [all reflections with F, <
20(F,)] were then dropped from the refinement, leaving
1301 observed reflections. At the same time, the
ytterbium atom was treated anisotropically. The re-
finement converged at R; = 0.084, R, = 0.066.

(6) G. S.Smith and L. E. Alexander, Acta Crysiallogr., 16, 462 (1863).

(7) D.T. Cromer, A, C. Larson, and J. T. Waber, ¢bid., 17, 1044 (1964).

(8) “Internmational Tables for X-Ray Crystallography,” Vol, III. The
Kynoch Press, Birmingham, England, 1862, p 202.

(8) Reference 8, p 216.

(10) The anomalous scattering correction is an integral part of our ver-
sion of oRPLS; see J. A, Ibers and W. C. Hamilton, Acia Crystallogr., 17, 781
(1964).
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TaABLE I

OBSERVED AND CALCULATED STRUCTURE FACTORS
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The assignments of the N(1), O(7), and C(20) atoms
in the acetylacetonimine molecule were in doubt, al-
though the structure could be interpreted most logically
in terms of the assignment made initially (which was
the structure finally accepted; see Figure2). To check
the assignment, the N(1) and O(7) assignments were
reversed and the structure was refined through two
additional least-squares cycles. The atom coordinated
to the Yb atom (now assumed to be nitrogen) had B =
1.2 A?, while the other atom (now assumed to be oxy-
gen) had B = 8.4 A2 These values are somewhat
unusual in comparison with the other B’s in the struc-
ture, thus indicating that the original assignment was
probably correct and the nitrogen is not coordinated.
Similarly, reversal of the N(1) and C(20) assignments
led to a relatively small value (1.8 A?) of B for “N(1)”
(now assumed to be carbon) and a large value (7.8 A2)
for “C(20)" (now assumed to be nitrogen).

A difference Fourier synthesis was essentially feature-
less in the neighborhoods of the N (1), O(7), and C(20)
atoms. This Fourier synthesis also had a peak 2.3
e~/A% high at the ytterbium position. Subsequent
refinement with the scattering factors for neutral Yb
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and O decreased the R factors very slightly, though not
significantly, to Ry = 0.083, R. = 0.066. Since there
seemed to be no basis for choice between neutral atom
and ionic scattering factors, the scattering factors for
the neutral atoms were used for all subsequent refine-
ments and calculation of F,. Scattering factors for the
neutral atoms seem reasonable in view of the Pauling
electroneutrality principle.

An attempt to treat the oxygen atoms anisotropically
met with failure, as the temperature factor of O(7) be-
came nonpositive definite. The temperature factor of
this atom remained nonpositive definite when the O(7)
and N (1) assignments were reversed again.

For correct weights, the value of wA? should be con-
stant when averaged over various ranges of F, and
(sin 6)/\, where A = F, — F.. An analysis showed
that the strong planes were overweighted. Theaverage
value of wA? was 1.01 for the ~500 reflections with
F, > 92.9, whereas it was 0.51 for the ~800 reflections
with 20(Fo) < F, < 92.9. It was thus decided that the
weights sliould be changed. This was done by reesti-
mating o(F,), in the following manner. Neglecting
the term s/r® (whose contribution is generally small for
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the strong reflections), letting F,? = KC (K is a con-
stant), converting o(F,) to c?(Fo?) by ¢?(Fo?) =4 F,*:
[62(F,)], and 1etting S = 1 (which is accurate to +=0.1),
eq 1 becomes

2ITEW2
o (F%) = K? [Imw + T + B:I 2)
or
o2(Fo?) F,2
<R o <?) = o¥((C) =

2ITEW2
et 2o 5]

This equation is remarkably similar to one frequently
used by Ibers!! to estimate standard deviations, namely

U'Z(Inet) = [CT + (PInec)g + 0.25 (flc)>2 (—Bl + -BZ)] (4)

where C7 is the total counts, I.; is the net intensity
(C in eq 1), P is an adjustable parameter, and 0.25-
(o/16)2(B1 + Ba) is the error contributed by the back-
ground measurements. The term (pl.et)? in eq 4 cor-
responds to the term 2/,.52%/4 in eq 3. For very strong
reflections, Iiaw = Inet, s0 that p = v/2/4. The value
assigned to p is thus entirely controlled by the standard
reflection in our case. The standard reflection had an
intensity of ~4000 counts in 40 sec, so that p = 0.02.
The standard deviations and thus the weights were
changed by changing the value of p. A trial value of
p = 0.10 ultimately gave satisfactory weights. In
practice, the new standard deviations were obtained by
adding 0.0095F,* to o2?(F,?) and converting back to
a(Fo).

Refinement with the new weights produced several
parameter changes of the order of a standard devia-
tion. A weighting analysis showed that the average
value of ZwA? was 0.47 for the 500 strongest reflections
and 0.44 for the 800 weaker reflections. Thus, the new
weights represented a significant improvement over the
weights previously used. A further indication that the
new weighting scheme represented an improvement was
given by the decrease in the differences between chem-
ically equivalent dimensions.

After dropping the 611 reflection, since very poor
agreement between F, and F. indicated a serious error
in the measurement, the refinement converged in two
cycles to R, = 0.073, R, = 0.076. No parameter shift
was greater than 0.1 standard deviation on the last
cycle. The standard deviation on an observation of
unit weight was 0.70. The observed and calculated
structure factors (kF, and F.) are given in Table I.
The positional parameters and temperature factors and
the estimated standard deviations (esd’s) are given in
Table II.

A final difference Fourier synthesis, based on all the
observed data, showed that there was still a peak 2

(11) E.g., see K. N. Raymond, P. W. R. Corfield, and J. A. Ibers, Tnorg.
Chem., T, 1362 (1968).
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TaBLE II
Atomic PARAMETERS OF Yb(acac);+ Hacim witH
ESTIMATED STANDARD DEVIATIONS

Atom x ¥ z B, A2
Yb 0.25711 (9) 0.13549 (18) 0.12833(8)
0(1) 0.3426 (11) 0.1978 (24) 0.0419 (12) 3.8(5)
0(2) 0.3574 (12) 0.0021 (26) 0.1776 (12) 4.4 (5)
0(3) 0.1964 (12) 0.1178 (29) —0.0071(12) 4.9(5)
04) 0.1492 (13) 0.2569 (25) 0.1290 (14) 4.6(6)
0(5) 0.2034 (11) —0.0965 (27) 0.1238 (12) 4.6(5)
Q(6) 0.2400(11) 0.1035 (27) 0.2633 (12) 4.8(5)
o(7) 0.3009 (10) 0.3633 (29) 0.1855 (11) 3.5(4)
N(1) 0.2958 (13) 0.4037 (33) 0.3567 (15) 4.4 (7)
C() 0.4494 (19) 0.2799 (43) —0.0164(22) 5.7(10)
C(2) 0.4144 (20) 0.1823 (42) 0.0486 (22) 4.9 (9)
C(@3) 0.4569 (18) 0.0896 (42) 0.1113(21) 4.9(9)
Cc) 0.4279 (20) 0.0059 (42) 0.1736 (20) 4.4 (8)
C(5) 0.4818 (20) —0.0930 (53) 0.2335(23) 7.5(11)
C(6) 0.1040 (20) 0.0444 (47) —0.1295(23) 6.9 (11)
C(7) 0.1228 (19) 0.1101 (44) —0.0384 (20) 5.0(8)
C(8) 0.0675(19) 0.1702 (45) 0.0041 (22) 5.8(9)
C(9) 0.0848(20)  0.2464(38)  0.0867(22) 4.2(9)
C(10) 0.0134 (20) 0.3132 (46) 0.1185(22) 6.6(10)
C(11) 0.1235(17) —0.3213 (42) 0.1380(19) 4.8(9)
C(12) 0.1645(17) —0.1763 (40) 0.1704 (20) 3.9(8)
C(13) 0.1592(16) —0.1216 (45) 0.2543 (19) 4.1(7)
C(14) 0.1978(18)  0.0067 (41)  0.2945(19) 3.9(8)
C(15) 0.1989 (19) 0.0300 (47) 0.3932 (22) 6.2 (10)
C(16) 0.3294 (16) 0.5797 (39) 0.1045(19) 4.2 (8)
C(17) 0.3164 (15) 0.5074 (35) 0.18930(16) 1.8(6)
C(18) 0.3230(14) 0.6057 (36) 0.2582 (16) 2.6 (7)
C(19) 0.3116(16) 0.5528 (37) 0.3388 (18) 2.8(7)
C(20) 0.3211(15) 0.6645 (38) 0.4157 (17) 3.5(7)

o 8y = 0.00340 (7), B = 0.00879 (25), 8w = 0.00180 (6),
B2 = —0.00104 (19), B15 = 0.00128 (5), and Bz = 0.00002 (17).

e=/A% high at the ytterbium position; thus, the scat-
tering factors for neutral ytterbium and oxygen did not
greatly improve the appearance of the map. There
were also several peaks on the order of 1 e—/A3 high
(~209% of the height of a peak due to carbon). They
were not in the neighborhoods of any of the 29 atoms
previously found, and they did not generally correspond
to plausible hydrogen atom positions. We assume
these to be the result of random errors in the data.

Discussion of the Structure

Figure 1 shows a stereographic view of two glide-
related molecules of Yb(acac);Hacim, and Figure 2
shows a projection of part of the structure onto (100).
The bond lengths and angles of the Yb-acac groupings
are given in Table III. Figure 3 presents the average
dimensions of an ytterbium-acetylacetonate ring. The
dimensions of the ytterbium acetylacetonimine group
are shown in Figure 4.

Each ytterbium atom is bonded to seven oxygen
atoms, six from the three acetylacetonate ions and one
from the acetylacetonimine group. The shortest Yb—
N distance in the structure is 4.27 A (between Yb and
N(1) in the same molecule); thus, coordination of ni-
trogen to ytterbium does not occur. The average
metal-oxygen distance of 2.23 (2) A (not including the
acetylacetonimine oxygen atom) is not significantly
shorter than the distance of 2.25 A predicted by Linga-
felter and Braun in their study of 16 metal acetyl-
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Figure 1.—Stereoview of two glide-related molecules of Yb(acac);- Hacim, showing the relative orientation of the thermal ellipsoid of Yb.
Dashed lines indicate possible hydrogen bonds.

ey’

c(is)

c19)

c2o)

Figure 2.—Projection of part of the Yb(acac),- Hacim struc-
ture onto (100). Primed atoms are related to the unprimed
atoms by the glide plane. Possible hydrogen bonds are shown by
the dotted lines (esd 0.03 A)4 The carbon atoms on the O(1)'—
0O(2)" and O(3)'-0(4)’ rings have been omitted for clarity.

acetonates.’?® The Yb-O(7) (Hacim) distance of
2.24 (2) A is the same, within experimental error, as the
other ¥Yb~O distances. The average O-O separation in
the acetylacetonate groups (the ligand “‘bite’’) is 2.75

(12) E. C. Lingafelter and R. L. Braun, J. Amer. Chem. Soc., 88, 2051
(1966).

(13) The ionic radius of ytterbium has been taken as 0.86 A for this
calculation.

TaBre I1I

INTRAMOLECULAR DISTANCES AND ANGLES
FOR THE Yb-acac GROUPINGS*®

Lengths, A
Vb-0(1) 2.29 (2) C(2)-C(3) 1.40 (4)
Yb~-O(2) 2.18 (2) C(3)-C(4) 1.39 (4)
Vb-0(3) 2.27(2) C(7)~C(8) 1.39 (4)
Yb~0O(4) 2.21(2) C(8)-C(9) 1.46 (4)
Yb~0O(5) 2.20(2) C(12)-C(13) 1.43 (4)
Yb-0(6) 2.24 (2) C(13)-C(14) 1.40 (4)
0(1)-0(2) 2.71 (3) C(1)-C(2) 1.54 (4)
0(3)-0(4) 2.73 (3) C(4)-C(5) 1.51 (4)
0(5)-0(6) 2.80(3) C(8)-C(7) 1.54 (4)
C(9)-C(10) 1.57 (4)
O(1)-C(2) 1.29 (3) C(11)-C(12) 1.49 (4)
0(2)-C4) 1.29 (3) C(14)-C(15) 1.58 (4)
O(3)-C(7) 1.35(3)
04)-C(9) 1.25(3)
0O(5)-C(12) 1.29 (3)
0O(6)-C(14) 1.28 (3)
Angles, Deg
O(1)-Yb-0(2) 74.7 (7) O(1)-C(2)-C(3) 123 (3)
0O(3)-Yb~0(4) 75.0(8) 0(2)-C(4)-C(3) 122 (3)
O(5)-Yb-0(8) 78.1 (8) O(3)~C(7)-C(8) 123 (3)
0(4)-C(9)-C(8) 124 (3)
Yb-0O(1)-C(2) 134 (2) O(5)-C(12)-C(13) 119 (3)
Yb-0(2)-C(4) 138 (2, O(6)-C(14)-C(13) 128(3)
Yb-0@3)~-C(7) 131 (2)
Yb-O(4)-C(9) 135(2) C(1)-C(2)-C(3) 123 (3)
Yb-0(5)-C(12) 137 (2) C(3)-CH)-C(5) 117 (3)
Ybh-0(6)-C(14) 129 (2) C(6)-C(7)-C(8) 122 (3)
C(8)-C(9)-C(10) 113 (3)
O(1)-C(2)-C(1) 114 (3) C(11)-C(12)-C(13) 119(3)
0(2)-C(4)-C(5) 120(3) C(13)-C(14)-C(15) 119 (3)
O(3)-C(7)~-C(6) 115 (3)
0(4)-C(9)~C(10) 123 (8) C(2)-C(3)-C4) 125 (3)
0(5)-C(12)-C(11) 122(3) C(7)-C(8)~C(9) 122 (3)
0O(6)-C(14)-C(15) 113(3) C(12)-C(13)-C(14) 125(3)

e Chemically equivalent dimensions are grouped together.
! The standard deviations are those estimated by ORFFE.

(3) A which is the same as the distance found in other
ytterbium acetylacetonates!’®!® but somewhat shorter
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than the distance of 2.82 A predicted by Lingafelter and
Braun.?

The acetylacetonimine group behaves as a mono-
dentate ligand. The ‘“‘dangling end” of the Hacim is
the NH; group, which takes part in hydrogen bonding
to link the molecules in chains parallel to (100). The
planarity of the Hacim molecule (average deviation of
the atoms from the unweighted least-squares plane is
0.006 A) strongly suggests that one of the hydrogen
atoms of the NH, group is hydrogen bonded to O(7) to
give a cyclic molecule (the N(1)-O(7) distance is 2.77
A; the C(19)-N(1)-O(7) angle is 82°1617), The other
hydrogen atom is bonded to either O(1)’ or O(3)’,
where the primed atoms are related to unprimed atoms
by the glide plane. The N(1)-O(1)’ and N(1)-O(3)’
distances of 3.06 (3) and 3.03 (3) A and the C(19)-
N(1)-0(1)’ and C(19)-N(1)-O(3)’ angles of 116 and
112° are in accord with other known N-H- - -O hydro-
gen-bonding parameters.!” This system of hydrogen
bonding is probably the reason that Yb(acac);: Hacim
recrystallizes unchanged from acetylacetone; the inter-
molecular hydrogen-bonding interaction should make
Yb(acac)s-Haeim less soluble than Yhb(acac);- Hacac.'®
The latter compound cannot undergo such extensive
hydrogen bonding since there is only one proton in the
enol form which ¢an form strong hydrogen bonds.

Of interest is the fact that the Yb~O bonds are longer
when the oxygens are involved in hydrogen bonding to
the NH; group. The distances from Yb to the hydro-
gen-bonded oxygen atoms O(1), O(3), O(6), and O(7)
range from 2.24 to 2.29 A, with an average value of
2.257 (12) A. The distances from Yb to O(2), O(4),
and O(5), which are hot involved in hydrogen bonding,
range from 2.18 to 2.21 A, with an average of 2.197 (9)
A. The difference between the hydrogen-bonded and
nonhydrogen-bonded Yb-O distances is 0.06 (2) A.
While this difference may not seem significant for a
single structure, this regularity has been observed in
every known structure of rare earth B-diketonates.!®
It thus seems to be a real and significant phenomenon.

There is a minor problem with the structural assign-
ment given for the Hacim group, and that is that the
“double bond” C(18)-C(19) seems to be longer than
the “single bond” C(17)-C(18) (see Figure 4). The
pertinent distances are 1.41 = 0.03 and 1.38 = 0.03 A,
respectively. These values are not significantly differ-
ent, however, and are not unreasonable in view of the
fact that electron delocalization in the conjugated
double-bond system, coupled with intramolecular hy-

(14) J. A. Cunningham, D, E. Sands, W. F. Wagner, and M, F. Richard-
son, Inorg. Chem., 8, 22 (1969).

(15) E. D. Watkins, I1, J. A, Cunningham, T. Phillips, 1I, D. E, Sands,
and W. F. Wagner, tbid., 8, 20 (1969).

(18) A bifurcated hydrogen bond may exist here, as the N{(1)-0O(6) dis-
tance of 3.05 A is short enough for hydrogen bonding to occur,!?” and the
C(19)~N(1)-0(6) angle of 139° gives a favorable geometry to the hydrogen
bond. (The O(B) atom lies 0.48 A from the mean plane of the Hacim mole-
cule,)

(17) G. C. Pimentel and A. L. McClellan, ‘“The Hydrogen Bond,”” W. H.
Freeman and Co., San Francisco, Calif., 1960, p 289,

(18) We have not examined the question of whether or not Yb(acac)s
Hacac actually exists in acetylacetone solution, but it is reasonable from the
mass action principle that Hacim is displaced from the coordination sphere.

(19) M. ¥, Richardson, to be submitted for publication.
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Figure 3.—Average dimensions of an ytterbium-—acetylace-
tonate ring. The standard deviations are calculated for the
mean from the formula ¢ = [Z(& — x)%/n(n — 1)}/?, where
% is the mean, x; is the individual measurement, and # is the
number of measurements.

. ~&2¢
] 158.(2)
126
S

Figure 4.—Dimensions
grouping.

of the ytterbium-acetylacetonimine
The esd’s are those estimated by ORFFE.

Figure 5.—The coordination polyhedron of Yb(acac);- Hacim.
The dashed lines between O(1)-0O(5) and O(3)-0(7) indicate
the slight folding of the O(1)-0(2)-0(3)-0(15) and O(1)-0O(3)-
O(4)-0(7) faces. Theesd’s for the O-O distances are 0.03 A.

drogen bonding between O(7) and N(1), is expected to
equalize these bond lengths.

The coordination polyhedron about the ytterbium
atom is best described as a capped trigonal prism (Fig-
ure 5), with one of the acetylacetonate oxygens O(6) as
the capping atom. The angles of the coordination



1638 [norganic Chemistry, Vol. 9, No. 7, 1970

TaBLE IV

ANGLES (DEG) IN THE COORDINATION POLYHEDRON®
O(1)-0(5)-0(@3) 43.9 O(1)-0(7)-0(3) 43.6
0(3)-0(1)-0(5) 44 .8 0(1)-0(3)-0(7) 47.1
0O(1)-0(3)-0(5) 91.3 0(3)-0(1)-0(7) 89.2
0O(1)-0(5)-0(2) 43.7 0(3)-0(7)-0(4) 43.7
0(2) -0(1)-0(5) 47.7 0(4)-0(3)-0(7) 47.2
(N 0(2 -0O(5) 88.6 0(3)-0(4)-0(7) 89.1
O(l) (7)-0(2) 51.9 0O(3)-0(4)-0(5) 55.2
O(1)-0(2)-0(7) 57.0 O(3)-0(5)-04) 54.1
0(2)-0(1)-0(7) 71.0 0O(4)-0(3)-0(5) 70.7
0(4)-0(5)-0(6) 55.6 0O(2)-0(68)-0(7) 69.9
0(5)-0(4)-0(6) 55.3 0(2)-0(7)-0(6) 54.9
0(4)-0(6)-0(5) 69.1 0(6)-0(2)-0(7) 55.2
0(4)-0(6)-0(7) 61.6 0(2)-0(5)-0(6) 59.7
0(6)-0(4)-0(7) 59.9 0(2)-0(6)-0(5) 62.0
0(4)-0(7)-0(6) 58.5 0O(5)-0(2)-0(6) 58.3
0(2)-0(1)-0(3) 92.4 O(1)-0(7)-0(4) 87.3
0(2)-0(5)-0(3) 87.8 0(1)-0(3)-0(4) 94.3

@ Standard deviations (estimated by ORFFE) are 0.5-0.9°.

polyhedron are given in Table IV, and the distances
are given in Figure 5. A capped trigonal prism has
been found for other seven-coordinate ytterbium che-
lates.¥'1*  Furthermore, the polyhedron is quite similar
to that of Y (bzac);- HyO% (bzac is the benzoylacetonate
anion), although Cotton and Legzdins prefer to call the
polyhedron a capped octahedron since the water mole-
cule lies on a pseudo-threefold axis of the complex.
The choice of capped trigonal prism in the present case
is at least partly dictated by the nearly planar quadri-
laterals O(1)-0(2)-0(5)-0(3) and O(1)-0(3)-O(4)-
O(7). The former quadrilateral is folded 3.1 (1.2)°
about the O(1)-0O(5) diagonal; the latter, 3.4 (1.3)°
about the O(3)~0(7) diagonal. Description in terms of
the tetragonal base-trigonal base polyhedron?! is also

(20) F. A. Cotton and P. Legzdins, Inorg. Chem., T, 1777 (1968).

(21) See E. L. Muetterties and C. M. Wright, Quari. Rev. Chem. Soc., 21,
109 (1967), for a review of the stereochemistry of higher coordination num-
bers.
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possible, with either the O(1)-0(2)-0O(5)-0(3) or the
0O(1)-0(3)-0(4)-0(7) quadrilaterals as the tetragonal
base and the O(4)-0(6)-0O(7) or O(2)-0(5)-0(6) tri-
angles as the trigonal base.

The acetylacetonate groups are nearly planar; the
average deviation of the carbon and oxygen atoms from
the unweighted least-squares planes are 0.016, 0.035,
and 0.053 A for the groups containing O(1)-0(2), O(3)-
0(4), and O(5)-0(6), respectively. The distances of
the ytterbium atom from these planes are (.37, 0.58,
and 0.28 A, respectively. Thus, each of the metal-
acetylacetonate rings is folded about the O-O line.
The ring containing O(1)-0O(2) is folded 12.1° toward
the acetylacetonimine group. The O(3)-O(4) ring is
folded 19.5° toward the O(5)-O(8) ring and away from
acetylacetonimine. The O(5)-0(6) ring is folded 10.1°
toward the O(3)-0O(4) ring.

Other than the hydrogen bonds, the shortest inter-

molecular contacts within a chain are: 0@3)—
C(15) = 340 (3), C@)-N(1) = 3.52 (3), C(1)-
N(1)’ = 3.33 (3), C(6)-N(1)" = 3.54 (3), C(7)-C(15)’

= 3.60 (3), 0(3)-C(20)’ = 3.64 (3), and O(1)-C(20)" =
3.68 (3) A, where the primed atoms are related to the
unprimed atoms by the glide plane. All other contacts
within the chain are greater than 3.70 (4) A. The
shortest contacts between chainsare: C(12)-C(18)" =
3.52 (4), 0(3)-C(16)"" = 3.62 (3), C(11)-0(4)"" =
3.64 (3), and C(11)-C(10)"" = 3.69 (3) A, where the
primed atoms are related to the unprimed atoms by a
unit translation along y. All other contacts are greater
than 3.70 (4) A.
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